EXERCISE: THE MITTAG-LEFFLER PROBLEM

Let *X* be a Riemann surface. The Mittag–Leffler problem is as follows: given the following data: a discrete set of points $\{z_{\alpha}\}$ in *X*, together with principal parts $f_{\alpha} \in \mathcal{M}_{z_{\alpha}}/\mathcal{O}_{z_{\alpha}} \cong \mathbb{C}[z_{\alpha}^{-1}]$, does there exist a meromorphic function $f \in \mathcal{M}(X)$ with only poles at the points z_{α} with principal parts f_{α} ?

Exercise 1. As before, *X* is a Riemann surface.

a) Show that the assignment

 $\mathcal{P}(U) := \{ (z_{\alpha}, f_{\alpha}), \{ z_{\alpha} \} \subset U \text{ discrete, } f_{\alpha} \in \mathcal{M}_{z_{\alpha}} / \mathcal{O}_{z_{\alpha}} \}$

defines a sheaf on X which fits into an exact sequence

 $0 \longrightarrow \mathcal{O} \longrightarrow \mathcal{M} \longrightarrow \mathcal{P} \longrightarrow 0.$

- b) Show that data as in the Mittag–Leffler problem above determines a class $\{(z_{\alpha}, f_{\alpha})\} \in H^{0}(X, \mathcal{P})$. Use the long exact sequence in cohomology to show that the problem has a positive solution if and only if $\delta(\{(z_{\alpha}, f_{\alpha})\}) = 0 \in H^{1}(X, \mathcal{O})$. Because of this property, the class $\delta(\{(z_{\alpha}, f_{\alpha})\})$ is called an *obstruction class*.
- c) Given data as above, choose a covering $\{U_i\}_{i \in I}$ of X such that each U_i contains at most one of the points z_{α} , and let $f_i \in \mathcal{M}(U_i)$ be local solutions to the problem. Let $\{\chi_i\}_{i \in I}$ be a partition of unity subordinate to $\{U_i\}_{i \in I}$, equal to 1 in a neighborhood of $z_{\alpha} \in U_i$. Show that

$$\omega := \sum_i d''(\chi_i f_i),$$

initially defined on $X \setminus \{z_{\alpha}\}$, defines 1-form in $\mathcal{E}^{0,1}(X)$. Show the Mittag– Leffler problem has a positive solution if and only if the Dolbeault obstruction class $[\omega] = 0 \in \mathcal{E}^{0,1}(X)/d''\mathcal{E}(X)$

d) Show that under the Dolbeault isomorphism $H^1(X, \mathcal{O}) \cong \mathcal{E}^{0,1}(X)/d''\mathcal{E}(X)$, the obstruction class of *b*) is mapped to that of *c*)